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Townsend’s attached eddy hypothesis assumes the existence of a set of energetic and
geometrically self-similar eddies in the logarithmic layer in wall-bounded turbulent
flows, which can be scaled with their distance to the wall. To examine the possible
self-similarity of the energetic eddies in fully developed turbulent pipe flow, we
performed stereo particle image velocimetry measurements together with a proper
orthogonal decomposition analysis. For two Reynolds numbers, Reτ = 1330 and 2460,
the resulting modes/eddies were shown to exhibit self-similar behaviour for eddies
with wall-normal length scales spanning a decade. This single length scale provides
a complete description of the cross-sectional shape of the self-similar eddies.
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1. Introduction

Townsend’s (1976) ‘attached eddy’ is arguably one of the most far-reaching
concepts in the analysis of wall-bounded turbulent flows. Townsend suggested that
in wall turbulence ‘. . . the velocity fields of the main (energy-containing) eddies,
regarded as persistent, organized flow patterns, extend to the wall and, in a sense,
they are attached to the wall’. The attached eddy hypothesis provides a framework
for a high-Reynolds-number flow model which considers a linear superposition of
self-similar attached eddies that span a wide range of sizes. The model considers
only the energy-containing motions that are independent of viscosity. Townsend
prescribed the eddies to follow a probability distribution of sizes, characterized by
a length scale that is proportional to the distance to the wall, such that the model
produces a constant shear stress. The model then predicts a logarithmic behaviour
for the streamwise and wall-parallel variances, and a constancy for the inner-scaled
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wall-normal component. Recent experiments by Hultmark et al. (2012) and Marusic
et al. (2013) strongly support the predictions for the streamwise component at high
Reynolds number, while direct numerical simulations (DNS) by Jimenez & Hoyas
(2008) and Lee & Moser (2015) show that the predictions for the wall-parallel and
wall-normal components begin to hold at considerably lower Reynolds numbers.

These studies give crucial support for the attached eddy concept, but as yet
there is no direct evidence for the presence of self-similar coherent motions in the
logarithmic region. As this conjecture constitutes the core of the theory, the search
for the appropriate independent coherent structure is an ongoing effort, and closely
follows the observations of organized motions in wall-bounded flows. In considering
‘representative’ eddies, it is important to remember that they are a statistical concept
which possess the gross features of an assemblage of eddies, and therefore do not
necessarily reflect the shape or structure of any individual eddy. Moreover, the
characteristic length scale of any eddy size is proportional, but not necessarily equal,
to the wall-normal location of its centre. Townsend (1976) used a double cone vortex
as a statistical model based on the flow visualizations by Kline et al. (1967), while
Perry & Chong (1982) and Perry, Henbest & Chong (1986) modelled the self-similar
eddies as hairpin vortices (for y+ > 100), based on the observations by Head &
Bandyopadhyay (1981). Perry & Chong (1982) and Perry et al. (1986) showed
that the attached eddy model can also reproduce the logarithmic part of the mean
velocity profile, and give meaningful descriptions of the turbulence spectra, although
no quantitative calculations were performed. Later attached eddy calculations by
Marusic (2001) and recently by Woodcock & Marusic (2015) used a hairpin packet
as the typical representative eddy, inspired by the particle image velocimetry (PIV)
studies of Adrian, Meinhart & Tomkins (2000), which showed that hairpin vortices
of different size are more likely to spatially align in the streamwise direction forming
trains of vortices, the so-called hairpin packets or large-scale motions (LSMs).

Recently, Hellström, Sinha & Smits (2011) used proper orthogonal decomposition
(POD) to analyse time-resolved stereo PIV data in the cross-stream plane of pipe flow
at ReD = 12 500, and showed that the large-scale features of the flow field can be
reconstructed using a small number of the most energetic POD modes. Hellström &
Smits (2014) built on this procedure by increasing the Reynolds number to ReD =
100 000, and decomposing the azimuthal direction in a pipe flow with a Fourier series
expansion. They showed that the most dominant motion consisted of three azimuthal
and one radial structure, where the azimuthal mode number (m) defines its spanwise
length scale. In this respect, Hwang (2015) showed that the self-similar structures in
the log layer are the most energetic structures, and suggested that the size of each
of the attached eddies would be characterized by its spanwise length scale. The POD
structures found by Hellström & Smits (2014) were similar to those found by Bailey
& Smits (2010) using two-point correlation techniques to identify the most energetic
structure.

Baltzer, Adrian & Wu (2013) performed a direct numerical simulation of turbulent
pipe flow at ReD= 24 580, and related the lower-order POD modes to hairpin packets
which lined up to create the very-large-scale motions (VLSMs) with a streamwise
wavelength of 15–30 pipe radii. Hellström, Ganapathisubramani & Smits (2015) used
a dual-plane PIV procedure and showed that the azimuthally decomposed POD modes
describe the hairpin packet or LSM with a spanwise length defined by the azimuthal
mode number, and that the radial evolution of the LSMs is described by a transition
between POD modes. They further concluded that the LSMs can line up to create the
longer VLSMs.
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Here, we build on this previous work and evaluate the self-similar coherent
structures in turbulent pipe flow. We will isolate the hairpin packets using POD,
where each radial POD mode and azimuthal mode number combination (n, m) will
describe an eddy of a fixed size. With this decomposition, we can show that a
universal length scale can be identified, which defines self-similar POD modes that
scale with the distance from the wall; that is, the POD modes define attached eddies
over a large span of scales.

2. Experimental set-up

The analysis presented in this work is based on data acquired at two pipe flow
Reynolds numbers, ReD = UbD/ν = 51 700 and 104 000, with corresponding friction
Reynolds numbers Reτ = uτR/ν = 1330 and 2460 respectively. Here, D is the pipe
diameter (=2R), Ub is the bulk velocity, uτ = √τw/ρ, where τw is the wall shear
stress, and ν and ρ are the kinematic viscosity and density of the working fluid (water)
respectively. The dataset for ReD= 104 000 is the same as that reported by Hellström
et al. (2015), but the dataset for ReD=51 700 was acquired specifically for the present
work.

The experiments were conducted in a 200D long pipe facility, consisting of seven
glass sections each 1.2 m long with an inner diameter D = 38.1 ± 0.025 mm, with
water seeded with 10 µm glass hollow spheres as the working fluid. The data were
acquired in a cross-sectional plane using stereoscopic PIV (2D-3C), using a pair of
5.5 Megapixel LaVision Imager sCMOS cameras operating at 30 Hz with interframe
times of 40 and 80 µs for the lower and higher Reynolds numbers, corresponding
to convective bulk displacements between two consecutive data planes of 2.38R and
4.77R for the two Reynolds numbers respectively.

The test section was enclosed by an acrylic box, filled with water to minimize
the optical distortion due to refraction through the pipe wall. An access port was
located immediately downstream of the test section in order to insert the stereo PIV
calibration targets while the pipe was filled with water. The target was a 1.6 mm thick
plate with 272 dots set in a rectangular grid. The target was traversed 2 mm in each
direction of the laser sheet, resulting in three calibration images for each stereo PIV
camera.

The data consisted of 10 blocks, each containing 2200 image pairs. The images
were processed using DaVis 8.1.6, and the resulting velocity field for the cross-plane
consisted of 20 vectors mm−2 on a square mesh. This corresponds to a grid resolution
of 1y/R=0.0076, or 1y+=10.1 and 18.7 for Reτ =1330 and 2460 respectively. Here,
1y is the grid spacing in the wall-normal direction, and all ‘plus’ variables are non-
dimensionalized by using ν/uτ (see also table 1). The velocity components [uθ , ur, ux]
were interpolated onto a new mesh with polar coordinates x = [θ, r, x], having 133
radial mesh points spaced a distance 1r, and 512 azimuthal mesh points, matching
the vector density at the wall to the nearest power of 2, while oversampling at the
pipe centre. The singularity point at r= 0, shown in (3.6), was avoided by offsetting
the inner mesh points by 1r/2.

3. Proper orthogonal decomposition

Proper orthogonal decomposition was introduced to the community by Lumley
(1967), and seeks a set of basis functions that has the maximum mean square
projection onto the original velocity field. We performed this ‘direct’ POD analysis
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ReD Reτ Grid size Grid size kθR m yp/R y+p
(1y/R) (1y+)

51 700 1330 0.0076 10.1 [4.29, 22.3] [3, 21] [0.30, 0.060] [401, 80.3]
104 000 2460 0.0076 18.7 [4.16, 33.3] [3, 32] [0.28, 0.037] [687, 92.9]

TABLE 1. Experimental test conditions, and the ranges for which the eddies exhibit
a self-similar behaviour.

on the full three-component fluctuating velocity field as obtained by experiment. In
polar coordinates,∫

r′

∫
θ ′

S(θ, θ ′, r, r′)Φ(n)(θ ′, r′)r′ dθ ′ dr′ = λ(n)Φ(n)(θ, r), (3.1)

where Φ(n) and λ(n) are the optimal three-component eigenfunctions with corresponding
eigenvalues for each POD mode number (n). The two-point correlation tensor, S, is
defined as

S(θ, θ ′, r, r′)= lim
τ→∞

1
τ

∫ τ

0
u(θ, r, t)u∗(θ ′, r′, t) dt, (3.2)

with ∗ denoting the conjugate transpose. When considering the azimuthal direction,
the two-point correlation tensor S only depends on the azimuthal shift, as it is a
homogeneous direction, 1θ = θ ′− θ . The azimuthal POD modes can be shown to be
the Fourier series decomposition. When properly resolved, the same argument can be
made for the streamwise and temporal directions, where the modes can be described
with a Fourier transformation. This would, however, require an alternative averaging
process in (3.2). Here, we combine the procedures of Hellström & Smits (2014) and
Hellström et al. (2015), who performed direct and snapshot POD on a cross-sectional
plane, while decomposing the azimuthal direction using a Fourier series expansion.
The POD equation in pipe cross-sectional coordinates can be written as∫

r′
S(m; r, r′)Φ(n)(m; r′)r′ dr′ = λ(n)(m)Φ(n)(m; r), (3.3)

where m represents the azimuthally decomposed mode number. The nature of the
cylindrical coordinate system of the axisymmetric pipe flow creates an asymmetry
in the kernel with respect to r′. Glauser & George (1987) addressed this problem
by absorbing r′ into the two-point correlation tensor and the eigenfunctions, denoted
by an overline, creating a set of substitute equations which can be solved for using
Hilbert–Schmidt theory,∫

r′
S(m; r, r′)Φ

(n)
(m; r′) dr′ = λ(n)(m)Φ(n)

(m; r), (3.4)

where the time-averaged two-point correlation tensor becomes

S(m; r, r′)= lim
τ→∞

1
τ

∫ τ

0
r1/2u(m; r, t)u∗(m; r′, t)r′1/2 dt. (3.5)
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FIGURE 1. The relative energy distribution of the first 20 azimuthal modes (m) and first
five POD modes (n). The cumulative energy contents of the first and first five POD modes
are represented by – – – and — · — respectively; (a) Reτ = 1330; (b) Reτ = 2460.

Each mode, Φ
(n)
(m; r), is normalized such that its L2-norm is unity, and λ(n)(m)

represents its energy content. The optimal POD modes can be retrieved by

Φ(n)(m; r)=Φ(n)
(m; r)r−1/2. (3.6)

The activity of each mode can be identified by the POD modal (or random)
coefficients α(n)(m; t), which are determined by projecting the modes back onto
the fluctuating velocity field,

α(n)(m; t)=
∫

r
r1/2u(m; r, t)Φ

(n)∗
(m; r) dr. (3.7)

The relative turbulence kinetic energies of the first 20 azimuthal modes m and five
POD modes n are shown in figure 1, for Reτ = 1330 and 2460. The integrated energy
for the first POD mode and the first 20 azimuthal modes represents approximately
25 % of the energy, and approximately 45 % when considering the first five POD
modes. The eigenvalues for the first 64 azimuthal modes and 10 POD modes are
considered to be fully converged, in that they are within ±2 % of those found using
only the first half of the full dataset.

The POD modes Φ(n)(m; r) may be reduced to radial profiles, one for each
POD mode number and azimuthal mode number combination. Figure 2 shows the
streamwise velocity component of the first three radial POD modes for azimuthal
mode numbers 5, 15 and 35. The azimuthal mode numbers are chosen such that they
span the self-similar region discussed in § 4. The pipe wall is located at y/R = 0,
while the centreline is at y/R = 1. The higher-order POD modes (n > 1) have an
increasing number of radial eddies, which approach the wall as the azimuthal mode
number increases. As indicated earlier, the magnitude of the mode is defined such
that the integral of Φ

(n)
(m; r) is unity.

We see from figures 1 and 2(a) that the most energetic structure is composed
of one radial and three azimuthal eddies, (n, m) = (1, 3), and they are identical to
those described by Hellström & Smits (2014) and Hellström et al. (2015). The modes
approach but do not go to zero at the wall (as they should), as the near-wall region is
limited by the PIV grid size (see table 1). The influenced region is contained within
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FIGURE 2. The modal profiles of the streamwise component for the POD modes at Reτ =
2460: (a) first radial mode, n= 1; (b) second radial mode, n= 2; (c) third radial mode,
n= 3; ——, m= 5; – – –, m= 15; — · —, m= 35.

(a) (c) (e)

(b) (d) ( f )

FIGURE 3. Contour plots of the streamwise components of sample POD modes for
Reτ = 2460, where white and black represent positive and negative values respectively. The
streamlines indicate the in-plane components of the POD modes, Φ(n)(m; r): (a) Φ(1)(5; r);
(b) Φ(1)(15; r); (c) Φ(2)(5; r); (d) Φ(2)(15; r); (e) Φ(3)(5; r); ( f ) Φ(3)(15; r).

y/R< 21y/R= 0.0152, which corresponds to y+< 20.2 and 37.4 for Reτ = 1330 and
2460 respectively. In this region, viscosity will be important, and it is therefore of
limited interest to the present study.

For clarity, the modes in figure 2 are reconstructed as two-dimensional modes in
figure 3 to display their radial and azimuthal behaviour. Figure 3 shows the first three
radial modes for azimuthal mode numbers 5 and 15. The streamwise component is
shown using contours, while the in-plane components for the (m=5) modes are shown
as streamlines (the (m = 15) modes are too small for a useful visualization). These
modes show an anticorrelation between the streamwise and wall-normal components,
making them large contributors to the Reynolds shear stress, as already observed by
Hellström & Smits (2014).
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FIGURE 4. The activity of the POD modes in the instantaneous velocity field. (a) The
streamwise component of Φ(1)(5; r); (b,c) show the instantaneous streamwise velocity
fluctuations at data block 6 and images 900 and 2108 respectively; Reτ = 2460.

It is important to remember that the concept of ‘representative eddies’ is a statistical
measure which represents the overall features of an assemblage of eddies, and it does
not necessarily reflect the shape or structure of any individual eddy. However, in
order to validate the use of the POD modes as representative eddies we can compare
Φ(1)(5; r) with instantaneous images of the fluctuating streamwise velocity field. The
instantaneous images shown in figure 4 were chosen from the subset of images
for which the magnitude of the POD coefficient α(1)(5; t) is larger than twice its
root mean square value. There are 330 images satisfying this condition, which
corresponds to 1.5 % of the realizations, and is comparable to the 2.6 % relative
energy contained within this particular mode. Although we see that there are a wide
range of ‘representative eddies’ present at any given time, there is a qualitative
resemblance between the largest instantaneous eddies and this particular POD mode,
giving us some confidence that the POD modes describe representative eddies.

4. Modal self-similarity

The POD modes in the azimuthal direction are harmonic and simply described with
a set of sine waves and are therefore inherently self-similar. As mentioned in § 3, the
modes in the temporal and streamwise directions are also self-similar, as they too are
harmonic. The modes in the radial direction, however, are driven by the dataset and
are not known a priori to solving the eigenvalue problem. Here, we will address the
self-similarity in the azimuthal and radial directions and the existence of a universal
length scale.

The size of the eddy is estimated by its azimuthal and radial length scales. The
wall-normal length scale is estimated as the radius of the eddy in the wall-normal
direction, here measured as the distance from the wall to the peak location of the first
POD mode for the investigated azimuthal mode number, Φ(1)(m; r). The azimuthal
wavelength is estimated as λθ = 2πRp/m, where Rp = (R − yp) and yp is the wall-
normal location of the mode maximum. Figure 5 shows the wall-normal length scale,
yp/R, and the azimuthal wavenumber, kθR=2πR/λθ , for the eddies resolved within the
first POD mode and azimuthal mode numbers m ∈ [1, 64], where the square brackets
indicate the range of mode numbers. The azimuthal mode number is indicated on the
upper abscissa, where the axis was mapped using kθR=m(Rp/R) and Rp/R was taken
from the modes obtained from the Reτ = 2460 data.
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FIGURE 5. The modal peak locations for the first POD mode (n = 1) and azimuthal
mode numbers m ∈ [1, 64]: q, Reτ = 1330; p, Reτ = 2460; · · · · · ·, yp/R = 2πC(kθR)−1,
with C= 0.2. Modes with a peak location y+p < 75 are identified with open symbols. The
lower abscissa indicates the azimuthal wavenumber, while the upper abscissa shows the
corresponding azimuthal mode number, for Reτ = 2460.

The aspect ratio of the eddy can be defined as yp/λθ and is constant for all
self-similar eddies. Hence, yp/R= 2πC(kθR)−1, where the constant C is estimated to
be 0.2 to fit the data in figure 5, see the dotted line. The eddies exhibit a self-similar
behaviour for almost a decade, with wavenumbers kθR ∈ [4.29, 22.3] (or m ∈ [3, 21])
with corresponding wall-normal distance yp/R ∈ [0.30, 0.060], for Reτ = 1330. At
Reτ = 2460, the structures stay self-similar for a wider span, with kθR ∈ [4.16, 33.3]
(m ∈ [3, 32]), with yp/R ∈ [0.28, 0.037] (see table 1). In this region, the wall-normal
distance yp is the appropriate length scale for both directions.

The deviation of the larger eddies (m∈ {1, 2}) is expected to be caused by the pipe
geometry, as the larger eddies are more influenced by the pipe curvature (Chung et al.
2015). The smaller eddies, estimated by y+p < 75, are influenced by the viscosity and
are indicated with open symbols in figure 5. It should be noted that the aspect ratio
stays constant for eddies reaching far into the wake region, with the centre of the
largest self-similar eddy, (n,m)= (1, 3), located at y/R= 0.28.

Figure 5 shows the self-similarity of the mode peak locations, while the self-
similarity of the radial POD modes themselves is shown in figure 6. The magnitude
of the scaled POD modes, Φ̂(n)(m; r), has been rescaled using its maximum value,
instead of its L2-norm as in figure 2. The wall-normal direction should be scaled with
the eddy radius, characterized by the distance from the wall to its peak location. As
this distance is sensitive to any offset in the wall location, the eddy size was instead
estimated by the distance from the peak location to the outer edge of the eddy. The
outer edge was identified as the location where the magnitude of the POD mode
reaches 5 % of its peak value, y5. All modes in figure 6 are scaled using the length
scale estimated from the first POD mode for any given azimuthal mode, shown in
figure 6(a). The scaled modes are insensitive to the chosen threshold within the range
2.5 % to 10 % of the peak value.
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FIGURE 6. The scaled modal profiles of the streamwise component for the radial POD
modes: (a) n= 1,m ∈ [5, 40]; (b) n= 1,m ∈ [5, 35]; (c) n= 2,m ∈ [5, 40]; (d) n= 2,m ∈
[5, 20]; (e) n= 3,m ∈ [5, 40]; ( f ) n= 3,m ∈ [5, 15]. Here, Reτ = 2460.

The scaled first, second and third POD modes, for kθR∈ [6.22, 40.6], are shown in
figure 6(a), (c) and (e) respectively. The first three POD modes show a clear collapse
for the near-wall eddies, for all azimuthal wavenumbers, while the higher order POD
modes (n> 1) show deviations for the eddies farther from the wall. The eddies farther
from the wall do show a collapse when excluding the higher wavenumber modes,
figure 6(d, f ). Although these eddies are physically detached from the wall in the sense
that there are eddies, of opposite sign, present closer to the wall, they are attached in
the sense of Townsend; they can be scaled using a single length scale estimating their
size as their distance from the wall. Moreover, the modes exhibiting self-similarity
are the lower-order azimuthal modes, while the higher-order azimuthal modes show
relatively weaker outer structures. The higher limit of the azimuthal wavenumber is
estimated by eye to be kθR = {40.6, 21.3, 16.4} for the first, second and third POD
modes respectively. Hellström et al. (2015) related the combination of the first three
POD modes to the hairpin packets and the transition between consecutive structures.
Figure 6 suggests that there is a lower limit to the size of the packets for which they
can detach; hence, the physically detached eddies are getting weaker relative to their
near-wall counterparts.

The two-dimensional reconstruction of the self-similar modes can be seen in
figure 7. Figure 7(a,c,e) shows the largest of the self-similar eddies, m = 5, while
figure 7(b,d, f ) shows the smallest of the self-similar eddies, for each respective POD
mode. The white marks indicate yp and y5, which are used as the fixed points for the
scaling. The first POD modes can be seen in figure 7(a,b), where a strong similarity
is maintained despite the large difference in eddy size. The larger of the eddies is 6.71
times and 3.51 times larger in the azimuthal and wall-normal directions respectively.

5. Discussion and conclusions

The energetic POD modes in turbulent pipe flows have previously been shown to
be associated with the large-scale motions, where the first three radial POD modes
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FIGURE 7. Scaled modes: (a) (n, m) = (1, 5), (b) (n, m) = (1, 40), (c) (n, m) = (2, 5),
(d) (n,m)= (2, 20), (e) (n,m)= (3, 5), ( f ) (n,m)= (3, 15). White represents positive and
black negative values; the white marks indicate the points used for scaling.

represent the same coherent structure at different stages of its evolution, initiation,
growth and wall detachment. During this evolution, the POD modes maintain its
azimuthal wavelength, which is known a priori to the POD evaluation. Here, we
provide evidence that these POD modes exhibit a self-similar behaviour, where
there is a single length scale representing the complete structure. This geometric
self-similarity of the energy-containing motions directly supports the recent findings
of Hwang (2015) and is inherent to models based on Townsend’s attached eddy
hypothesis.
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The eddies are found to exhibit a self-similar behaviour, with the azimuthal
wavenumbers of the largest to the smallest eddies spanning a decade. The centre
of the largest self-similar eddy reaches far into the wake region and is located at
y/R= 0.28. The modes resolving the energetic eddies in the homogeneous directions
are the harmonic ones, and thus are inherently self-similar. In the wavenumber range
kθR ∈ [4.16, 33.3], where the only non-homogeneous directions also are self-similar,
all eddies can be fully described with a single radial profile. The length scale
representing the eddy is estimated by its wall-normal radius, which is the universal
length scale completely describing the cross-sectional shape or the structure through
all stages of its evolution. However, with the current dataset, we are unable to verify
whether the wall-normal length scale is the appropriate streamwise length scale.
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